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Gold(l) complexes have increasingly found use as catalysts in a Table 1. Gold(l)-Catalyzed Cyclopropanation?

. . . . . . ) R1 R2
variety of organic transf_ormatloﬁsNhlle the majorlty of methods 1R=Pv OR ) R® 5% PhPAUCE 5% AGSDF 3
draw on the propensity of gold to activate alkynes toward 2R=Ac 4~ =+ Rﬁ/j\R“

- . . R=Bz # R? MeNO,, rt R* )=
nucleophilic additior?, more recent studies have suggested that RO
carbene-like intermediates may be involved in a number of gold- entry alkene ester product yield (cis:trans)
(D-catalyzed reaction®.Similar reactivity has been observed in
transition-metal catalyzed olefin cyclopropanation with propargyl ' PR 1 P = 4 74% (6:1)
acetates which is proposed to proceed via a vinyl carbene generated PO
by transition metal-induced rearrangement of a propargyl éster. > TMS -~ 2 TMSA=< 5 62% (1.3:1)
On the basis of our observation that cationic phosphinegold(l) AcO
complexes catalyze the rearrangement of propargyl pivaloate esters Py

; ; CoH 1 CoHpp = 6 48% (1.3:1)
to cyclopentenoneswe hypothesized that these complexes might 5 ;;Vo
also catalyze an intermolecular olefin cyclopropanation reaction and H
thereby provide a platform to further examine the apparent 4 1 w 7 61% (>20:7)
generation of gold(h-carbene intermediates from alkynes. O H opiv

To this end, reaction of propargyl pivaloafewith styrene, PivO,
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o
catalyzed by 5 mol % cationic triphenylphosphinegold(l), afforded ° !
Ph

8n=1 68% (>20:1)

cyclopropanet in 74% yield as a 6:1 mixture dfistrans diaste- 9n=2 69%(1.27)

reomers (Table 1, entry 1). We were pleased to find that the gold- Ph

(I)-catalyzed cyclopropanation reaction tolerates a wide range of 7 1 el N( 10 73%
olefin substitution, including monosubstituted (entries3), 1,2- Ph PivO

disubstituted (entries46), 1,1-disubstituted (entries-B), trisub-

: . . 8 (j\ 3 % 1 73%
stituted (entries 910), and tetrasubstituted alkenes (entry 11). 820
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Functionalized olefins, such as allyltrimethylsilane and dihydro-

pyran, smoothly underwent gold(l)-catalyzed cyclopropanation to  ° 1 12 84% (5:1)

afford cyclopropane5 and?7, respectively. Additionally, a variety H OPiv

of common esters undergo the requisite 1,2-migration, including Me Me

acetate, pivaloate, and benzoate. 10 o 2 W\ 3 69% (1.2:1)
To gain insight into the mechanism of this transformation, H OAc

chirality transfer in the course of the gold(l)-catalyzed reaction of ~ ,, I 1 N 14 67%

enantioenriched propargyl acetdtewas examined (eq £)Gold- OPiv

(I)-catalyzed reaction o15 with styrene furnished cyclopropane
16in 65% yield with excellent olefin and cyclopropane diastereo- 2 Reaction conditions: propargyl ester (0.2 M in nitromethane), alkene
selectivity, but with complete loss of enantiomeric excess, consistent (4 €auiv-), Tt

with the formation of a vinyl gold(lj-carbene species. Moreover,  scheme 1. Mechanistic Hypothesis

thecis-selectivity observed in this reaction is consistent with stereo-

chemical models proposed for cyclopropanation reactions involving phs. Al " Ph
carbene transfer from a transition metakrbenoid (Scheme £). P“’\f H*‘@f e Ph%OAC
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Notably, the diastereoselectivity of the gold(l)-catalyzed cyclo- concerted carbene transfer from a gole{@arbenoid intermediate.
propanation of 4-methoxystyrene showed a dependence on theAdditionally, the increased diastereoselectivity in the cyclopropa-
phosphine ligand (eq 2). This enhancementigrselectivity is also nation of thecis-isomer is consistent with the proposed model.
consistent with a model in which interaction of the olefin substituent ~ On the basis of these results and the influence of ligand on the
with the ligated metal (ipath B,Scheme 1) disfavors formation  diastereoselectivity of the cyclopropanation, we initiated studies
of the trans-cyclopropane. The high stereospecificity in the gold- toward the development of an enantioselective gold(l)-catalyzed
(I)-catalyzed cyclopropanation ofs- andtrans3-methyl styrenes cyclopropanatior:2 While the diop-gold(l)-catalyzed cyclopropa-
(egs 3 and 4) lends additional support to a mechanism that involvesnation of styrene furnished only racemic cyclopropagewe were
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encouraged to find tha22 was generated with 22% ee in the
BINAP-gold(l)-catalyzed reaction (eq $¥° Further ligand opti-

mization identified DTBM-SEGPHOS-gold(l) as the catalyst of
choice for the enantioselective olefin cyclopropanation reaéfion.
Alteration of the steric size of the propargyl ester led to the

observation that sterically more demanding esters, such as pivaloate

produced cyclopropanes with higher enantiomeric excess (&g 6).
Notably, in all cases the gold(l)-catalyzed reaction affordectitie
isomer with high diastereoselectively.

2.5% L*AuCl),

5% AGSbE L* = diop 67%, 0% ee
o Ag 6 = BINAP 85%, 22% ee (5
2P P )= = xyly-BINAP 86%, 44% o0 )
-2 22 AcO =DTBM-SEGHOS  72%, 60% ee
>20:1 cis:trans
o 2.5% (R)-DTBM-SEGPHOS(AuCI),
L 5% AgSbFg PH __/ R =Me(22) 72%, 60% ee
O R o = Ph (23) 73%, 68% ee (6)
P styrene, MeNO,, rt )/—R =t-Bu(4) 70%, 81% ee
- >20:1 cis:trans o

With these conditions in hand, we examined the effects of styrene
aromatic ring substitution on the enantioselective cyclopropanation.
As with the propargyl esters, there is a clear correlation between
the steric size of the aryl substituent and enantioselectivity. For
example, the enantioselectivity of the gold(l)-catalyzed cyclopro-
panation reaction improved from 81% ee with styrene to 87% ee
with o-methylstyrene, and further to 94% ee in the synthesis of
cyclopropane26 (eq 7). Halogenated styrenes also participate in

2.5% (R)-DTBM-SEGPHOS(AuCI),

OPiv N
_ R AN 5% AgSbFg AA=< "
1 MeNO,, rt PivO
>20:1 cis:trans
Ar = Ph (4) 70%, 81% ee X =2-Br-Ph (27) 60%, 76% ee
= 2-Me-Ph (24) 83%, 87% ee =3-Cl-Ph (28) 69%, 76% ee
= 4-t-Bu-Ph (25) 82%, 81% ee =4-F-Ph (29) 85%, 82% ee

=2,6-Me-4-t-Bu-Ph (26) 71%, 94% ee = 1-naphthyl (30) 79%, 85% ee

TMSA_< (8)

31 PvO

2.5% (R)-DTBM-SEGPHOS(AuCI),

QPiv 5% AgSbF

+ TMS
1 MeNO,, rt
74%, 5:1 cis (78% ee): trans (65% ee)
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the cyclopropanation reaction. For example, 4-fluorostyrene af-
forded cyclopropang9in 85% yield and 82% ee. Gold(l)-catalyzed
reaction of propargyl pivaloatewith 1-vinylnaphthylene produced
cis-cyclopropane30 in 79% vyield and 85% ee. Notably, the
enantioselective cyclopropanation is not limited to aryl olefins;
silylmethylcyclopropane3l is produced as a 5:1 mixture ofs:
transisomers with 78% and 65% ee, respectively (eq 8).

In conclusion, we have developed a triphenylphosphinegold(l)-

cat. RuCl3, NalO4 NalOy4
Ph_A=< —_— PhMOH PH OH (9
PivO 4 MeCN/CCly/H,0 O3 H,0, MeOH o (-)33

62% over two steps

(I)-catalyzed reactions of alkynes. Further studies on the mechanism
and scope of gold(l)-catalyzed cyclopropanation as well as ap-
plication of chiral phosphinegold(l) complexes to enantioselective

catalysis are ongoing and will be reported in due course.
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